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The psychophysics of numerosity, or number sense, is the study of how discrete numbers of stim-
uli are perceived. Empirical studies have shown that the number sense conforms to Weber’s law of
perceptual discriminability. This means that the standard deviation of the perceptual noise on the per-
ceived number of objects scales linearly with the number of objects, indicating perceptual noise is not
independent of the percept. This property, observed in both humans and non-human animals, is com-
monly known as “scalar variability." The generation of large scale behavioral data sets (≈ 106 trials)
from animals trained to perform numerosity tasks, allows us to determine whether or not judgements
about count stimuli coincide with deviations from precise scalar variability (Scott & Constantinople, et
al. Elife, 2015). Here we propose a probabilistic behavioral model to account for variability in count
discrimination tasks. Our model, based on a model of shared stochastic gain in neuronal populations,
can closely fit the psychometric function and the inferred uncertainty of count perception from behav-
ing animals. We compare the performance of our model to a previously proposed 16-parameter model
based on signal detection theory and show that our model fits data better than the previous model
with just two parameters. This work draws a direct connection between neurophysiology and behav-
ior by demonstrating that perceptual psychophysics can be explained by the statistical properties of
neuronal populations.

Additional Information

Model description: Our model is motivated by recent work on neural response variability in the
monkey visual system (Goris & Ziemba et al., COSYNE, 2017; Goris, Movshon, Simoncelli. Nat
Neuro, 2014). This work showed that over-dispersion in neural spiking could be explained by a
stochastic gain that is shared among all neurons. We generalized this model to spiking activity from
a population of neurons used to perform a perceptual decision making task and, rather than directly
fit this model to neuronal data, we used it to account for behavior in a count discrimination task.

Our model begins with characterizing the neuronal responses on each trial. Ignoring the timing of
spikes, we assume that the trial-by-trial response of each neuron is given by a Poisson random vari-
able with a rate that is proportional to the number of stimuli n, i.e. ηi|n ∼ Poiss(λi),where λi = cin+δi.
This model is consistent with models of neural integration during evidence accumulation (Hanks et
al., Nature, 2015; Scott et al., Neuron, 2017). The parameters ci and δi are neuron-specific sensitivity
and baseline noise parameters, respectively. If we sum the total number of spikes over all neurons
then the population spike rate will be λ = cn+ δ, where c =

∑
i ci and δ =

∑
i δi.

In addition to the noise induced by Poisson firing, on each trial there is a shared, stochastic gain that
acts as multiplicative noise. If the gain on a given trial γ is drawn from a gamma distribution then we
may model the number of population spikes η on each trial by

η|γ, n, c, δ ∼ Poiss(γλ), γ|ν ∼ Gamma(1/ν, ν),

where ν is the variance of γ. These two distributions form a conjugate prior and likelihood, allowing
us to derive the marginal distribution of η in closed form, resulting in a negative binomial distribution

η|ν, n, c, δ ∼ NB(1/ν, p)

where p = ν(cn+δ)
ν(cn+δ)+1

.

Count discrimination: Suppose a subject is presented with nL stimuli on the left, and nR stim-
uli on the right. A separate population of neurons counts each of the sets of stimuli. Assuming
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Figure 1: Comparison of model fits. A) Estimated psychometric functions from the count discrimi-
nation task. The signal detection theory (SDT) estimate is based on the model presented in (Scott &
Constantinople, et al. Elife, 2015). B) Comparison of standard deviations based on maximum likeli-
hood using the SDT model and our 2-parameter model, as well as a direct fit of our variance model
to the estimates from the SDT model (MSE).

that the perceptual parameters are the same for both populations, but that the populations are in-
dependent. The responses to the number of stimuli can be described by ηj ∼ NB(1/ν, pj), where
pj = ν(cnj + δ)/(1 + ν(cnj + δ)), j ∈ {R,L}. The subject’s judgement will be made on Y ≡ ηR− ηL,
which is distributed according to a skewed generalized discrete Laplace distribution (GDL) (Lek-
shmi & Sebastian. Int. J of Math. and Stat. Invention, 2014), which gives the probability mass
PGDL(Y = m|ν, nL, nR) that the difference in perceived stimuli will be m. If the subject’s decisions
are determined completely by the GDL distribution then the probability of the animal choosing “right"
is simply

P (right|θ, nL, nR) = P (Y > 0|θ, nL, nR) =
∞∑
m=1

P (Y = m|θ, nL, nR), (1)

where θ = {ν, δ, c}. Thus, the discriminative behavior of the animal can conceivably be described by
the above distribution with only three parameters.

Experiments: We examined how well our model describes animal behavior during a count discrimi-
nation task (Scott & Constantinople, et al. Elife, 2015). On each trial a rat was presented with between
0-16 flashes from LED’s on both sides of their visual field and were trained to report by nose-poke
which side had the larger number of flashes.

We used over 5 × 106 trials of behavioral data to fit (1) with c = 1 (i.e. number of spikes scales
exactly with number of flashes). We compared the resulting 2-parameter model fits to a previously
described 16-parameter model based on signal detection theory (SDT) (Scott & Constantinople, et
al. Elife, 2015). The estimated psychometric functions are presented in Figure 1A. We found that
our 2-parameter model had a larger log-likelihood (LL) than the 16-parameter model (LL2 param =
−3.04 × 105, LL16 param = −3.12 × 105), indicating that our model better fit the data with far fewer
degrees of freedom.

We also compared estimates of perceptual noise for each flash count from our model to estimates
from the SDT model. The SDT model estimated a different variance for each flash count. In contrast,
our model has a functional form of the variance given by Var[η|n] = n + δ + ν(n + δ)2. As shown in
Figure 1B, we find that maximum likelihood fits of our parameters display qualitatively similar fits as
the SDT model, but imply slightly larger perceptual noise. This is not due to the inability of our model
to fit the estimates from the SDT model however, as we found that directly fitting the model parameters
to the SDT model standard deviations (by minimizing mean-squared error (MSE)) resulted in nearly
perfect agreement.


